A Class of Reversible Primitive Recursive Functions
نویسندگان
چکیده
Reversible computing is bi-deterministic which means that its execution is both forward and backward deterministic, i.e. next/previous computational step is uniquely determined. Various approaches exist to catch its extensional or intensional aspects and properties. We present a class RPRF of reversible functions which holds at bay intensional aspects and emphasizes the extensional side of the reversible computation by following the style of Dedekind-Robinson Primitive Recursive Functions. The class RPRF is closed by inversion, can only express bijections on integers — not only natural numbers —, and it is expressive enough to simulate Primitive Recursive Functions, of course, in an effective way.
منابع مشابه
A class of Recursive Permutations which is Primitive Recursive complete
We focus on total functions in the theory of reversible computational models. We define a class of recursive permutations, dubbed Reversible Primitive Permutations (RPP) which are computable invertible total endo-functions on integers, so a subset of total reversible computations. RPP is generated from five basic functions (identity, negation, successor, predecessor, swap), two notions of compo...
متن کاملPrimitive recursive functions versus partial recursive functions: comparing the degree of undecidability
Consider a decision problem whose instance is a function. Its degree of undecidability, measured by the corresponding class of the arithmetic (or Kleene-Mostowski) hierarchy hierarchy, may depend on whether the instance is a partial recursive or a primitive recursive function. A similar situation happens for results like Rice Theorem (which is false for primitive recursive functions). Classical...
متن کاملA complete characterization of primitive recursive intensional behaviours
We give a complete characterization of the class of functions that are the intensional behaviours of Primitive Recursive algorithms. This class is the set of primitive recursive functions that have a null basic case of recursion. This result is obtained using the property of ultimate unarity and a geometrical approach of sequential functions on N the set of positive integers. AMS Subject Classi...
متن کاملA Rice-like theorem for primitive recursive functions
We provide an explicit characterization of the properties of primitive recursive functions that are decidable or semi-decidable, given a primitive recursive index for the function. The result is much more general as it applies to any c.e. class of total computable functions. This is an analog of Rice and Rice-Shapiro theorem, for restricted classes of total computable functions.
متن کاملThe Primitive Recursive Functions are Recursively Enumerable
Meta-operations on primitive recursive functions sit at the brink of what is computationally possible: the semantic equality of primitive recursive programs is undecidable, and yet this paper shows that the whole class of p.r. functions can be enumerated without semantic duplicates. More generally, the construction shows that for any equivalence relation ≈ on natural numbers, N/ ≈ is r.e. if ≈ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 322 شماره
صفحات -
تاریخ انتشار 2016